(e’

== ' ‘ HE rOpy
T oftware Engineering Institute m F‘LE JU;E}

Technical Report

ESD-TR-86-207
CMU/SEL-86-TR-3

AD-A178 975

Durra:
A Task-Level
Descripuon Language

Preliminary Reference Manual

Barbacci
Wing

M. R
J. M.

December 1986
1 Version 0.1

DTIC

ey
L]

o0
~2

- Best
Available
Copy

Software Engineering Institute

Technical Report
ESD-TR-86-207
CMU/SEI-86-TR-3
December 1986 Version 0.1

Durra: A Task-Level Description Language
Preliminary Reference Manual

M.R. Barbacci
J.M. Wing

Approved for public release. Distribution unlimited.

Carnegie Mellon University Pittsburgh, Pennsylvania 15213

Thus research is carried out jointly by the Software Engineering Institute, a Federally Funded Research and Development
Center, sponsored by the Department of Defense, and by the Department of Computer Science, sponsored by the
Defense Advanced Research Projects Agency (DOD), ARPA Order N¢ 4976, monitored by the Air Force Avionics
Labcratory Under Contract F33615-84-K-1520. Additional support for J M Wing was provided in part by the Natona
Science Foundation under grant DMC-8519254

-——-—_‘___ﬁ_

This technical report was prepared for the

SEl Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD position.
It is published in the interest of scientitic and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

\\§>T%,>;:¢s<i)¢*~—fg§A,
Karl H. Shingler =
SEl Joint Program Office

Y

i .
ccexsicn For
“ — SIS |
| NTES mRAM
; DTIC TAR]
Ur aunvuneced O

Justificavion

.

‘ iatribution/
. Avallabllity Codes

Fvall End/ofw
Special

Table of Contents
1. Introduction
1.1. Scenario
1.2. Terminology
1.3. Notes on Syntax
1.4. Keywords and Predefined Identifiers
1.5. Literal Values
1.6. How To Read This Manual
. Compilation Units
. Type Declarations
. Task Descriptions
. Task Selections
. Intertace Information
6.1. Port Declarations
6.2. Signal Declarations
6.3. Rules for Matching Selections with Descriptions
7. Behavioral Information
7.1. Function Pan
7.1.1. Larch Traits and Specifications
7.1.2. Functional Specificaticn of a Task
7.2. Timing Part
7.2.1. Time Literals
7.2.2. Event Expressions and Time Windows
7.2.3. Timing Expressions
7.2.4. Restrictions on Time Values and Time Windows
7.3. Rules for Matching Selections with Descriptions
8. Attributes
8.1. Rules for Matching Selections with Descriptions
9. Structural tnformation
9.1. Process Declarations
9.2. Queue Declarations
9.3. Data Transformations
9.3.1. Off-Line Data Transformations
9.3.2. In-Line Data Transformations
9.4. Binding Po:t Names
9.5. Process-Queue Graph Reconfiguration
10. Predefined Language Facilities
10.1. Functions
10.2. Attributes
10.2.1. Mode Attribute
10.2.2. Implementation Attribute
10.2.3. Processor Attribute
10.3. Tasks
10.3.1. Broadcast
10.3.2. Merge
10.3.3. Deal
10.3.4. lllustrative Task Descriptions
10.4. Configuration File
11. Appendix -- An Extended Example
11.1. Data Transformation Tasks
11.2. Type Declarations
11.3. Task Descriptions
11.4. Application Description

DB WN

—
OQOWNNNO N~ =

11
12
12

12
13

v

-
[}

14
15
16
16
16
18
19
20
20
21
22
23
23
23
24
24
25
27
27
29
29
30
30
30
20
31
31
31
31
32
33
34
34
34
34
37

Durra: A Task-level Description Language
Preliminary Reference Manual

Abstract

; Durra is a language designed {o support the development of large-grained parallel
programming applications. This document is a preliminary reference manual for the
syntax and semantics of the language. Comments, suggestions, criticisms, etc., are

f appreciated.
Dr. Mario R. Barbacci Professor Jeannette M. Wing
g Software Engineering Institute Dept. of Computer Science
§ Carnegie Mellon University Carnegie Melion University
Pittsburgh, PA 15213 Pittsburgh, PA 15213
(412) 268-7704 (412) 268-3068
i Barbacci@sei.cmu.edu.arpa Wing@c.cs.cmu.edu.arpa
SEI-86-TR-3

\

COMMENT -- Durra, also called “Indian millet” and “Guinea corn,” is a type of grain sorghum
with slender stalks, widely grown in warm dry regions. Durra sounds like “durable” which
isnt a bad connotation. Carnegie Institute personnel indicated that comn is by far the
largest in size of all grains. We respectfully declined their suggestion for a name denoting
“largest grain.”

1. Introduction

Many computation-intensive, real-time applications require efficient concurrent execution of multiple tasks
devoted to specific pieces of the application. Typical fasks include sensor data collection, obstacle
recognition, and global path planning in robotics and vehicular control applications. Since the speed and
throughput required of each task may vary, these applications can best exploit a computing environment
consisting of multiple special and general purpose processors that are logically, though not necessarily
physically, loosely connected. We call this environment a heterogeneous machine.

During execution time, processes, which are instances of tasks, run on possib., separate processors, and
communicate with each other by sending messages of different types. Since the patterns of
communication can vary over time, and the speed of the individual processors can vary over a wide
range, additional hardware resources, in the form of switching networks and data buffers are required in
the heterogeneous machine.

The application developer is responsible for prescribing a way to manage all of these resourcez. We call
this prescription a task-level application description. It describes the tasks to be executed, the possible
assignments of processes to processors, the data paths between the processors, and the intermediate
queues required to store the data as they move from source to destination processes. A task-level
description language is a notation in which to write these application descriptions. The problem we are
addressing is the design of a task-level description language.

We are using the term description langu.age rather than programming language to emphasize that a
task-level application description is not translated into object code of some kind of executable “machine
language.” Rather, it is to be understood as a description of the structure and behavior of a logical
machine, that will be synthesized into resource allocation and scheduling directives. These directives are
to be interpreted by a combination of software, firmware, and hardware in a heterogeneous machine.

Although our ultimate goal is to design and implement a task-level description language that can be used
for difierent machines and for varying applications, our first pass is influenced by both a specific
architecture, ‘-HETO [4],‘and by a specific application, the Autonomous Land Vehicle (ALV), and more
specifically, the perception components of the ALV-{5}" We assume there is a cross-bar switch, intelligent
buffers on the switch sockets, and a scheduler that can communicate with all processors, buffers, and /O
devices.

1.1. Scenario

Here is a scenario from the user's viewpoint of how the task-level language is used to help develop an

application to run on some target, heterogeneous machine. We see three distinct phases in the process:
1. the creation of a library of tasks,

2. the creation of an application description, and

3. the execution of the application.

Library creation activities ,
These happen early in the life of an application, when the primitive tasks are defined.

1. The developer breaks the application into specific tasks. Typical tasks are sensor
processing, feature recognition, map database management, and route planning. Other
tasks might be of a more general nature, such as sorting, array operations, etc.

2. The developer writes code implementing the tasks. For a given task, there may be possibly
many implementations, differing in programming language (e.g., one written in C or one
written in W2), processor type (e.g., Motorola 68020 or IBM 1401), performance
characteristics, or other attributes. The writing of a task implementation is more or less
independent of Durra and involves the coding, debugging, and testing of programs in
various languages executing on various machines.

3. The developer writes task descriptions and enters them into the /ibrary. This is where Durra
first enters the picture. Durra is used to write specifications of eacin task’s performance and
functionality, the types of data it produces nor consumes, and the ports it uses to
communicate with other tasks.

Description creation activities
These happen when the user decides to put together an application (say, autonomous land vehicle) using
as bhuilding blocks tasks in the library.

1. The user writes a task-level application descnption. Syntactically, a task-level application
description is a single task description and could be stored in the library as a new task. This
allows writing hierarchical task-level application descriptions.

2. The user compiles the description. During compilation, the compiler relrieves task
descriptions matching the task selections specified by the user from the library and
generates a set of resource allocation and scheduling commands to be interpreted by the
scheduler.

3. The user links the output of the compiler with run-time support facilities, obtaining a
scheduler program.

Application execution activities
1. The scheduler downloads the task implementations, i.e., code, to the processors and
interprets the scheduling commands and initialization cade for the machine.

2. The heterogeneous machine runs the processes on processors as dictated by the
scheduler program.

1.2. Terminology

Durra is used for describing process interaction at a logical, not physical, level, and thus it can be used
independently of any physical configuration of an actual heterogeneous machine. We will use different
terms to distinguish between the physical network (P) of processors, memaries, and switches
implementing the heterogeneous machine, and the logical network (L) of processes and data queues
implementing the application (A). Figures 1 and 2, respectively, illustrate the physical and logical
components of the system.

butfers (P) computers acting as input or output devices, interfacing processors with the switch.

As an aptimization, buffers execute predefined tasks such as merge, deal, broadcast,
and data transformations.

implementation (A) code written in some programming language for a specific processor, and satisfying
the performance, functional, and other requirements specified in a task description.

ports (L) processes’ logical input or output devices. !nput ports remove data from queues;

Scheduler

(Y
LA N
AN A
] (SR
L] LR TN
4 ' [(Y
! [t)
Ve ’] s
’ ’) \
’] Y \
’] [} N
’ ’ \ \
/J ! ! N
’ 4 A Y
” =T L AT
]
i / \ \
7 '7 “ '\
A] \ 5
’] LY \
K4] \ .
']) .
7 ’ \ %
/ ' [} %
, ’) \
’]) \
4 [\ \
, [‘ v
Fd ! |‘ Y
4 ’ \ % :
’ \ \|;
r
Processors l
Buffers (] (] a a
(processor+
memory)

Switch

Buffers

(processor+
memory)

Data Paths Control Paths
Switched meseemes
Permanent
Figure 1 -- Physical Components

FROCESS.PORT

Input Ports

Queue

QCutput Ports

PROCESS.PORT

“igure 2 -- Logical Components

output ports deposit data in queues.

process (L) a uniquely identifiable instance of a task, running on a processo of the heterogeneous
system. The same task may be insiantiated any number of times to obtain mufliple
processes executing the same code.

processor (P) a computer in the heterogeneous system, not to be confused with the scheduler
processor or the buffers. Each processor in the heterogeneous system has one or
two buffers that act as interfaces between the processor and the switch. Processors
send data to and receive data from buffers as their means of communication with
other processors.

queue (L) a uniquely identifiable logical link between two processes, following a FIFO discipline.
Queues serve as intermediaries between input and output ports.

scheduler (P, L) a computer serving as resource allocater and dispatcher in the heterogeneous
system. It controls the switch, all processors, and all buffers.

switch (P) an interconnection netwcrk used to tie together all processors in the heterogeneous
system. The switch routes data between the buffers attached to the processors.
task (L, A) an 3bstraction of a set of implementations, each written for a class of processors,

ilmpiementing part of an application. Tasks are stored in libraries.
The processes of 1.2 system are implemented by downloading and executing task implementations, i.e.,
programs, onto processors . f the right kind. The queues of the system are implemented by allocating
space in the corresponding ufters’ memories. This is illustrated in Figure 3.

1.3. Notes on Syntax
To describe the syntax of the 1»uk-Level Description Language, we use the standard Backus-Naur-Form
(BNF}, with the following conventions.]

1. Commas separate alternatives. =razes (“{" and "}") indicate optionality.

2. Terminal symbols are encivsed in ¢ otes (* and "), but the quotes do not belong to the
terminal.

3. No distinction is made between upper and lower case ietters in terminals and non-terminals.

4. A non-terminal of the form xyz_List_ stands for a list of one or more xyz's separated by
commas, i.e., the character “,”, not the string “‘comma.”

5. Comments start with the characters “ -". Any characters between “--" ard the end of the
line are ignored.

6. Identifiers are, in the usual fashion, sequences of letters, digits, and “_" (underscore),
beginning with a letter.

7. Strings are arbitrary sequences of Ascii printable characters, ericlosed in double quotes (7).
A double quote inside a string must be written as two consecutive double quotes:

"A string with a double quote, ™, inside”

8. Integer and real numbers are always decimal, i.e., base 10. A real number can terminate
with a period “.” without a fractional pant.

1.4. Keywords and Predefined ldentifiers

Keywords and predefined identifiers are highlighted in normal text by writing them in hold face, or in
“quotes”, respectively. The following words are keywords in the language: after, and, array, ast,
attributes, before, behavior, bing, cst, date, days, during, end, ensures, est, gmt, hours, identity, if,

l———a_‘—_\

sssssssss OO OO OO
Ol OO §o
Buffers H H
i i d
i : :
i) H
ek H g
BSHH SH aHH
: i us
1

index, in, is, local, loop. minutes, months, mst, not, of, or, out, ports, process, pst, queue,
reconfiguration, remove, repeat, requires, reshape, reverse, rotate, seconds, select, signals, size,
structure, task, then, timing. to, transpose, type, union, when, years.

Th~ following words are predefined identifiers in the language: “broadcast”, ‘“current_size”,
“current_time", “deal”, “deiay”, “get”, “implementation”, “merge”, “minus_time", “mode"”, “plus_time",
“processor”, “put”,

1.5. Literal Values

Each of the non-terminals IntegerValue, RealValue, StringValue, and TimeValue stands for (a) literals
{constants) of the appropriate kind, or (b) names of attributes (Section 8) whose values are literals of the
appropriate kind, or {7) calls to one of the predefined functions in the language (Section 10.1) returning
values of the appropriate kind:

IntegerValue ::= Integerliteral ,

GlobalAttrName ,
FunctionCall

RealValue ::= ReallLiteral ,
GlobalAttrName ,
FunctionCall

StringValue ::= StringlLiteral ,
GlobalAttrName ,
FunctionCall

TimeValue ::= Timeliteral ,
GlobalAttrName ,
FunctionCall

1.6. How To Read This Manual

This manual is written top-down, so the reader should be aware that there are many forward references.
One can read this manual from beginning to end to get an overview of the language, and then read
individual sections to understand the details of each language feature.

2. Compilation Units

Syntax:

Compilation ::= CompilationUnit_List, .. .ion 5

CompilationUnit = TypeDeclaration ,
TaskPescription

Meaning:

There are two kinds of compii~tion units (i.e., separately compilable structures): type declarations and
task descriptions.

Any number of compilation urits can be submitted to the compiler as a group, in a single text file. Each
unit is compiled in order, and if no errors are detected, the unit is entered into the library. It can then be
used by units compiled later, including units submitted later in the same compilation.

|

3. Type Declarations

Syntax:
TypeDerlaration ::= ‘TYPE'' TypeName ‘'‘IS’'’ TypeStructure ,

‘“TYPE’’ TypeName ‘'‘IS’’ UnionStructure
TypeName ::= Identifier
TypeStructure ::= 1'SIZE’’ ElementSize ,

*‘ARRAY’ ' ArrayDimension ‘‘OF’’ TypeName
ArrayDimension ge= (0 IntegerValue_ListsP“m ‘)’ -~ Positive integer
ElementSize ::= IntegerValue , -- Positive number of bits

IntegerValue '‘TO’’ IntegerValue

-- Non-negative size range

UnionStructure = ‘'UNION’'’ ‘(' lypeName List__ . ‘)’
Examples:
'ype packet is size 128 to 1024; -- Packets are of variable length
type tails is array (5 10) of packet; ~-- Tails are 5 by 10 arrays of packets

type mix is union (heads, tails); -- Mix data could be heads or tails

Meaning:

Type declarations are compilation units that define the structure of the data produced or consumed by the
tasks. A type declaration introduces a global name for a data type, or a set of previously declared types,
which cai, then be used in port declarations.

There are two kinds of type declaraions. First, a type declaration can specify the structure of the data
moving t!*rough a process port. The basic data type is a sequence of bits of fixed cr variable (but bound)
fagin. More complex types are declared as multi-dimensional arrays of simpler types. Second, a type
can specity the union of a number of previously declared, i.e., named, types where data items moving
through A process port could be one of any of the member types.

10

4. Task Descriptions

Syntax:
TaskDescription ::= ''TASK'’ TaskName

InterfacePart

{ BehaviorPart }
{ AttrDescriptionPart }
{ StructurebPart }
‘‘END’’ TaskName

Meaning:

Task descriptions are compilation units used as building blocks for task-level application descriptions.

A task description is divided into four components: (1) interface information, (2) behavioral information, (3)
attributes, and (4) structural information. All these components will be described in later sections. Figure

4 shows a template for a task description, where the ports and signals clauses constitute the interface
information.

task task-name

ports ~- REQUIRED
port-declarations

-- Used for communication between a process and a queue

signals -
signal-declarations
-~ Used for communication batween a process and the schaeduler

~ OPTIONAL

behzvior
function-predicates
timing-expressions
-- A description of the behavior of the task

-- OPTIONAL

aitributes -- OPL{IONAL
attribute-value-pairs

-- Additional propaerties of the task

structure
process-declarations
queue-declarations
binaing-declarations
reconfiguration-staternents

-- A process-queue graph describing tha internal structure of a task
end task-name;

-~ OPTIONAL

Figure 4: A Template for Task Descriptions

11

5. Task Selections
Syntax:

TaskSelection

‘'TASK'' TaskName
{ PortDeclarationPart }
{ SignalDeclarationPart }
{ BehaviorPart }
{ AttrSelectionPart }
{ Y'END’’ TaskName |}

Meaning:
Task selections are templates used to identify and retrieve task descriptions from the library.

A given task, e.g., convolution, might have a number of different implementations that differ along
dimensions such as algurithm used, code version, performarice, or processor type. In order to select
among a number of alternative implementations, the user provides a task selection as part of a process
declaration, as described in Section 9.1. This task selection lists the desirable features of a suitable
implementation.

Syntactically, a task selection looks somewhat like a task description without the structure part, and all
other components except for the task name are optional. For example, notice that in the syntax of a task
declaration, the interface part (Section 6) requires the declarations of the ports, whereas in a task
selection, the declaration of the ports is optional. Figure 5 shows a template for a task selection. For
brevity, it only the task name is given, the terminating “end task-name” is optional.

task task-name -~ REQUIRED
ports -- OPTIONAL
port-declarations
-- A signature that must match pert directions and types of
-- that of a task dascription in the library.

signals -- OPTIONAL
swignal-declarations
~- A signature that must match signal directions and names of
- *hat of a task deacription in the library.

beha .ior -- OPTIONAL
fun-aon-predicates
timing-expressions
-- A specification of the dasired functionality and timing behavior of
-- that of a task description in the library.

attributes -- OPTIONAL
attribute-value-pairs
-+ Named (actual) attributes used to match (formal) attributaes of
-- those of a task description in the library.
end task-name -- optional if only the task name is npaecified

Figure 5: A Template for Task Selections

12

6. Interface Information
Syntax:

InterfacePart ::= PortPeclarationPart { SignalDeclarationPart }
Meaning:
The interface portion of a task description or a task selection provides information about the ports of the

processes instantiated from the task and the signals used by the processes instantiated from the task to
communicate with the scheduler.

6.1. Port Declarations

Syntax:

PortDeclaratienPart ::= ‘'‘'PORTS’’ PortDeclaration List,_ ion ' 7 '

PortDeclaration ::= PortName List_ . *‘':’''" '‘'IN’’ TypaName
PortName_List__ = *'‘':’’ '‘OUT’’ TypeName

PortName ::= Identifier

GlobalPortName = { ProcessName '‘'.’’ } PortName

Examples:

ports

inl: in heads;
outl, out2: oul tails;

Meaning:
A port declaration specifies the direction of the data movement and the type of data moving through the
port.

Port names must be unique within a task. Outside the task, ports are identified by their globai name,
obtained by prefixing the name of a process (instance of a task) to the name of the port, e.g., p1.out2.

6.2. Signal Declarations

Syntax:
SignalDeclarationPart ::= ‘''SIGNALS'’
SignalDeclaration_List, = *';'’

SignalDeclaration ::= SignalName_List___ . ‘':’’ ‘‘IN"’ ,
SignalName_Listcmam ‘rofro rvoutrrr o,
SignalName List__ . ‘‘':’’ ‘‘IN’’ ‘‘OUT'’

SignalName ::= Identifier

GlobalSignalName = { ProcessName '‘.’’ } SignalName

Examples:

signals

Stop, Start, Resuma: in;
RangeError, FormatError: outl;
Read: in out;

i

13

Meaning:)

Signals are special messages exchanged between a process and the scheduler. A signal declaration
specifies the direction of the signal. An in signal is a message that a process can receive from the
scheduler; an out signal is a message that a process can send to the scheduler; an in out signal is used
for both directions of communication.

All signal names must be unique within a task. Outside the task, a signal is identified by compounding the
name of a process (instance of 2 task) wiin the name of the signal, e.g., p1.Restart.

6.3. Rules for Matching Selections with Descriptions

If a task selection provides a port declaration clause, the port names provided in the task selection
override the port names provided in the task declaration. The port declaration lists must ctherwise be
identical, i.e., the number, the order, the directions, and the types must be identical.

If a task selection provides a signal declaration claise, the clause must be identicai to that provided in the
task description, i.e., the names, number, and directions must be identical.

Py

14

7. Behavioral Information

Syntax:
BehaviorPart = “'BEHAVIOR'’‘ FunctionPart TimingPart
FunctionPart = { ‘‘REQUIRES’’ '"’ predicate ‘"' '';’'’' }

{) \ENSU-RES:' ’ AR LN predicate AR NS \ \l.l ! }
TimingPart = { ‘‘TIMING'’ TimingExpression ‘‘';’' }
predicate i Larch Predicate*
Meaning:

The behavioral information part specifies functional and timing information about the task.

The functional information part of a task description consists of a pre-condition (requires) on what is
required to be true of the data coming through the input ports, ard a post-condition (ensures) on what is
guaranteed to be true of the data going out on the output ports.

The timing information part of a task description consists of a timing expression foliowing the keyword
timing. The timing expression describes the behavior of the task in terms of the operations it performs on
its input anc output ports.

The formal meaning of the behavioral information is essentially based on first-order logic. In what follows,
we give only an informal meaning of the individual parts and their combination. See [1] for the formal
meaning.

7.1. Function Part

The functional information of a task description describes the behavior of the task in terms of predicates
about the data in the queues, before and after each execution cycle of the task. The Larch Shared
Language is used as the assertion language in the predicates of these clauses. We restrict this section to
a very brief outline of Larch’s approach. '

Larch [2, 3] uses a two-tiered approach to specifying program modtules: a trait defines state-independent
properties, and an interface specification defines state-dependent properties of a program. A trait is
written in the Larch Shared Language (LSL), and it provides the assertion language used to express and
define the meaning of the predicates of an interface specification.

For a program module such as a procedure, a Larch interface specification is written in a Larch Interface
Language and contains predicates about the states before and after the execution of the procedure. The
Larch Interface Language (LIL) to be used is specific to the programming language in which the
procedure is written (e.g., C, CommonlLisp, or Ada.)

"Essentially, a first-order assertion, [2].

15

7.1.1. Larch Traits and Specifications

Figure 6 depicts a Larch (two-tiered) specification of queues with “put” and “get” operaticns. The top part
of the specification (Figure 6.a) is a trait written in LSL used to descripe values of queues. A set of
operators and their signatures following introduces defines a vocabulary of terms to denote values of a
type. For example, Empty and Insert(Empty, 5) denote two different queue vaiues. The set of equations
following the constrains clause defines a meaning for the terms; more preciseiy, an equivalence relaticn
on the terms, and hence on the values they denote. For examiple, from the above trait, one could prove
that First(Rest(Insert(Insert(Empty, 5), 6))) = 6.

The bottom part of the specification {Figure 6.b) contains two interfaces written in a “‘generic” Larch
interface language. They describe the functional behavior of two queue operations, “put’ and “get"”
(queue operation names are used to write timing expressions, which are described in Sectici1 7.2.3.) A
requires is a pre-condition on the state of an operation's input data that must be true upon operation
invocation; an ensures is a post-condition on the state of an operation’s input and output data that is
guaranteed to be true upon operation termination. An omitted predicate is taken to be true. The
specitication for “get” states that "g~t" must be called withi a non-empty queue and that it modifies the
original queue by removing its first element and returning t.

Qvals: trait
introduces
fmpty: — Q
Insert: Q, E — Q
Iirat: Q — E
Rest: Q — Q
isEmpty: Q - Bool
isIn: Q, E — Bool
constrains Q so that
Q generated by [Empty, Insert]
forall g: Q, @, al: E
First (Insert (Empty), @)) = e
First (Insert (g, e)) = if isEmpty(q) then e else First(q)
Rast (Insert(q, e)) = if isEmpty(q) then Empty else Insert(Rest(q), e)
isEmpty (Empty) = true
isEmpty (Insert (g, e)) = false
isIn(Empty, e) = false
isIn(Insert(q, @), @l) = (e = el) | isIn(q, el)

a. A Trait for Queue Values
Put = operation (gq: queue, e: elament)
ensures qpo't = Insert(qg, e)
Get = operation (q: queue) returns (e: element)
requires ~isEmpty (g)
ensures qput = Rest (q) & @ = Firast(q)

b. Interfaces for Queue Operations

Figure 6: A Larch Two-Tiered Specification for Queues

16

7.1.2. Functional Specification of a Task

We use a similar approach as Larch’s for the specification of the functional behavior of a task. Thatis, we
view the task as a procedure whose input and output “parameters” are defined by the ports of the task.
A requires clause states what is required to be true of the data coming through the input ports; an
ensures clause states whatis guaranteed to be true of the data going out through the output ports.

if one were to view each cycle of a task as one execution of a procedure, the requires and ensures are
exactly the pre- and post-conditions on the functionality of that cycle. An omitted predicate is taken to be
true.

These are not assertions about the queues connected to the ports. For instance, an assertion could be
made that a datum of some type was sent to an output port. It cannot be asserted that the datum is in the
associated output queue, at the end ot the task execution, because it could have been removed by then.

it is up 1o the implementor o} a task to verity that the functionality of the task satisfies the requires and
ensures predicates. A task description writer and user may assume that the task implementor performed
such verification either formally or informally.

For example, consider the matrix multiplication task in Figure 7. The task takes input matrices from two
queues and outputs the result matrix on an output queue. The.requires clause states that the task
implementor may assume that the number of rows of the matrix entering through the portin1 equals the
number of columns of the matrix entering through in2. The ensures clause states that the result of
multiplying the two input matrices is output through the output port.

task multiply
porls
inl, in2: In matrix;
outl: Ul matrix;
behavior
requires "rows (First(inl)) = cols(First(in2))";
ensures "Insert(outl, First(inl) * First(in2))";
end multiply;

Figure 7: A Matrix Multiplication Task

7.2. Timing Part

Processes remove data from their input queues and store data into their output queues following a task-
specific pattemn provided by a timing expression. A timing expression describes the behavior of the task
in terms ot the operations it performs on its input and output ports; this is the behavior of the task seen
from the outside.

7.2.1. Time Literals

17

Syntax:
TimeLiteral = { Date ‘‘@’- } TimeOfDay { TimeZone }
IndeterminateTime
Date ©'T years ''/'’ months ‘'‘/’’ days
years = IntegerValue
months *:= IntegerValue —- range is 1,.12
days .= IntegerValue -- range is 1..31
TimeOfDay = { { hours ‘':’’ } minutes ‘'’ } seconds ,
RealValue TimeUnit ,
IntegerValue TimeUnit |,
hours .= IntegerValue —-- range is 0..23
minutes ::= IntegerValue -- range is 0..59
seconds .= IntegervValue ,
RealvValue
TimeUnit 1= Y'YEARS''
' *"MONTHS' *
' ‘DAYS’ ’
' '"HOURS' ’
' 'MINUTES' * ,
' '‘SECONDS” *
TimeZone = RRECSTEd —-- Eastern Standard Time
‘csTrr, ~-- Central Standard Time
‘MSTC -~ Mountain Standard Time
‘‘psT —- Pacific Standard Time
YYGMTY -~ Greenwich Meridian Time
‘'‘LOCAL’ ', -~ Local Time
‘“AST’ -- Application Start Time
IndeterminateTime SR
Examples:
5:15:00 est ~- An absolute time: 5 hours 15 minutes Eastern Standard Time.
15.5 hours ast == An application raelative time: 15 hours and 30 minutes
~- after the start of the applicatijon.
2:10 -~ An event relative time: 2 minutes 10 seconds
-- after somae base event.
2.1667 minutes -~ Approximately the same event relative time as above
=~ 10 saconds is 1/6th of a minute.
* == An indeterminate point in time.
Meaning:

Time values are used to specify points in time. These can be either (1) absolute, i.e., independent of the
application, in which case they must be followed by the name of a time zone; (2) relative to the application
start time, in which case they must be followed by the fictitious time zone “ast”; or (3) relative to some
prior event in the application, in which case neither a date nor a time zone is allowed.

The notation allows for alternative ways of denoting time of day or time elapsed between events. Time
can be expressed in the familiar formats “HH:MM:SS", “MM:SS", or just “SS”. Thus, a plain number
represents a number of seconds. Time can also be expressed as a multiple of other time units by writing

18

a number followed by a unit name such as seconds, minutes, hours, days, months, or years. The use
of seconds as a time unit is redundant, but allowed for completeness' sake. The format adopted by a
user might depend on the nature of the application, on any standard convertions in the application
domain, on the magnitude of the time scale, on the precision required, or simply on aesthetic, personal
preferences.

7.2.2. Event Expressions and Time Windows

Syntax:
EventExpression ::= GlobalPortName
{ '*."" QueueOperation }
{ TimeWindow }
''DELAY'’ TimeWindow
TimeWindow = ‘Y ['' TimeValue '',’’ TimeValue '‘']'’
QueueOperation 1:= Identifier -- Configuration dependent
Examples:
inl -- An operation (get, by daefault) on the queue faeading port inl.
inl.gat -~ An operation taking a systam default time to complate.
inl.get([5, 15} -- An operation taking betwaan 5 and 15 saconds to complete.
delay([10, 15] -- A delay intaerval lasting betwoan 10 and 15 saeconds.
daelay(*, 10} -- A delay interval taking at most 10 seconds.
delay (10, *] -- A daelay intaerval taking at least 10 saeconds.
Meaning:

Queue operations performed by the processes constitute the basic events of an application description.
An event expression represents a queue operation on a queue attached to a specific port, taking a
variable amount of time to complete. A pseudo-operation, ““delay”, is used to represent the time
consumed by the process between (real) queue operations.

The name of the queue operation is optional. If the name is not given, a default queue operation is
assumed: “get” for input ports, “put” for output ports. The complete list of queue operations is
configuration dependent, as described in Section 10.4.

Time windows are used to describe the duration of a queue operation or the delay between two
operations. Time windows are denoted by a pair of time values [T .. T4, defining the boundaries of the
interval.

min’

The time window associated with a queue operation describes the minimum and maximum time needed
to perform the operation. This time window is optional. and if it is missing, a configuration dependent,
default window is assumed, as described in Section 10.4. Intervals of time b2atween queue operations are
denoted by a ‘“delay” operation whose time window describes the minimum and maximum time
consumed by the process in between queue operations.

Wik

19

7.2.3. Timing Expressions

Syntax:
TimingExpression ::= { “‘LOOP’'’ } CyclicTimingExpression
CyclicTimingExpression D= ParallelEventExpression_List.P_c"
ParallelEventExpression ::= BasicEventExpression_Listdo“bl._v.ni“l_b“
BasicEventExpression ::= EventExpression ,
{ Guard ‘'=>'' } ‘(' CyclicTimingExpression ')’
Guard ::= " 'REPEAT'’ IntegerValue ,
‘'‘BEFORE’’ TimeValue , -- Absolute time
‘'AFTER’ ' TimeValue , -- Absolute time
‘'‘DURING’’ TimeWindow , == Toin 1s Absolute time
Al \WHENI ! AR NS predicate ARLNS
predicate o Larch Predicate?
Examples:
inl || in2(10,15] -- Two parallel input operations, starting simultanaeously.
inl{0,5] delay(10,15] outl -- Two sequential inputz operations with an intervening delay.
repeat 5 => (inl{0,5] delay[10,15]) outl) -- Same as above but as a cycle repeated five times.
before 18:00:00 local => (. . .) -- A sequence constrained to start before 6 pm.
after 18:0C0:00 lecal => (. . .) -- A meguence constrainaed to start after 6 pm.
during [18:00:00 local, 12 hours} => (. . .) -- A sequence constrained to start at night.
when ~empty(inl) and ~ampty(in2) => ((inl.get || in2.get) outl.put);
-- A saquence constrained to start after both input queues have data.
loop when ~aempty(inl) and ~empty(in2) => ((inl.get || in2.get) outl.put);
-- The same sequence as above but repeated indefinetaly.
Meaning:

A timing expression is a regular expression describing the patterns of execution of operations on the input
and output ports of a task. The keyword loop can be used to indicate that the pattem of operations is
repeated indefinitely.

A timing expression is a sequence of parallel event expressions. Each parallel event expression consists
of one or more event expressions separated by the symbol “||" to indicate that their executions overlap.
Since the expressions might take ditferent amounts of time to complete, nothing can be said ahout their
completion, other than a parallel event expression terminates when the last event terminates.

Parallel events stant simultaneously but are not necessarily completed at the same time. In the
expression “(in1 || in2{10,15])", the duration of the input operation on port in1 defaults to some
configuration-dependent value (See Section 10.4) and might be shorter or longer than the explicit
duration of the input operation on port in2, i.e., between 10 and 15 seconds.

A basic event expression is either a queue operation (including “delay”) or a timing expression enciosed
in parentheses. The latter form also allows for the specification of a guard, an expression specitying the
conditions under which a sequence of operaticns is allowed (o start or repeat its execution.

2Essentially, a first-order assertion, [2].

20

Guard Description

repeat This guard indicates repetitions of a timing expression. The number of repetitions is
a non-negative integer value.

before This guard is followed by an absolute time value representing the latest start time

allowed. If the deadline does not include a date, i.e., itis just a time of day, and the
ceadline has passed, then the sequence is blocked at most until midnight of the
current date and will unblock at “00:00:00" of the following day. The task is
terminated if a dated deadline has passed.

after This guard is followed by an absolute time value representing the earliest start time
allowed. If necessary, the sequence is blocked until the deadline. If the deadline
does not include a date, i.e., it is just a time of day, then the sequence is blocked at
most 24 hours. For example, if it is "00:00:00.000" and the deadline is
“23:59:59.999" the sequence will unblock at the end of the day.

during This guard is followed by a time window during which the sequence is allowed to
start. The first value is the earliest start time allowed and must be an absolute time
value; the second value is the latest start time allowed and can be an absolute time
value or a time value relative to the former.

when This guard describes what is required to be true of the state of the system (i.e., time
and queues, see Section 10.1) before the sequence is allowed to start. Itis a pre-
condition for starting the sequence.

7.2.4. Restrictions on Time Values and Time Windows
Although the syntax allows both absolute and relative ume values to appear in either of the two
boundaries in a time window, not all of the possible combinations make sense:

1. A date in a time value that uses the “ast” time zone is meaningless.

2. In the time window attached to a queue operation, including “delay”, the time values must

be relative (i.e., no dates or time zones allowed) and are interpreted relative to the star of
the operation.

3. In the time window of a during guard, the first time value (T) must be absolute. The
second time value (T__) can be absolute or relative. In the latter case, the time value is
relativeto T _. .

7.3. Rules tor Matching Selections with Descriptions

The meaning of the behavioral information is a predicate, M(R, T) => M(E, T), where R is the requires
predicate, E is the ensures predicate, T is the timing expression, and M; is the meaning function
mapping a predicate and timing expression into a boolean [1].

A task description rnatches a task selection if the predicate associated with the behavioral information of
the task description implies that of the task selection. If no timing expression appears, the predicate
simplifies to R => E, and that of a task description must imply that of the task selection.

Currently there are no facilities to check these implications and timing expressions, so for the time being
the behavioral information part of a task description is treated as commentary information. However,
timing expressions are used to simulate the behavior of a task and are therefore required by the simulator
(6).

21

8. Attributes
Syntax:

AttrDescriptionPart

‘‘*ATTRIBUTES’’ AttrDescription_List NNl 0

semicolon
AttrDescription ::= AttrName ‘'‘=’’ AttrValue
AttrSelectionPart ::= O ‘ATTRIBUTES’’ AttrSelection_List, . ., . "';'’
AttrSelection ::= AttrName '‘=’’ AttrDisjunction
AttrName ::= Identifier
GlobalAttrName ::= { ProcessName '‘'.’’ } AttrName
AttrDisjunction ::= AttrConjunction ,

AttrDisjunction '‘OR’’ AttrConjunction

AttrConjunction ::= AttrPrimary,
AttrConjunction ‘‘AND’‘' AttrPrimary

AttrPrimary ::= AttrTerm ,
''‘NOT' " AttrTerm

AttrTer ::= AttrValue ,
‘(' AttrDisjunction ‘')’

AttrValue ::= OtherAttrValue ,
‘(' OtherAttrvalue List
ModeAttrValue ,
ImplementationAttrValue ,
ProcessorAttrValue ,

\) 14
comma Y

OtherAttrValue ::= IntegerValue ,
RealValue ,
StringValue ,
TimeValue
Examples:
attributes -- Attributes in a task declaration
author = "jmw";
color = ("red”, "white", "blue");
implementation = "/usr/jmw/alv/cowcatcher.o";

Qua'm_Sizo = 25 ;

altributes ~- Attributaes in a task selection
author = "jmw" Of "mrb";
color = “"rad" and "blue" and not ("green" or "yallow");

processor = Warpl;

mode = grouped by 4;
Meaning:
Attributes specify miscellaneous properties of a task. They are a means of indicating pragmas or hints to
the compiler and/or scheduler. In a task description, the developer of the task lists the possible values of
a property; in a task specification, the user of a task lists the desired values ot a property. All attribute
values used in matching task selections with task descriptions must be constants, computable before
execution time, i.e., tasks and their implementations are stalic properties of an application.

Example attributes include: author, version number, programming language, file name, and processor
type. There may be as many attributes as desired. Attributes defined in other tasks can be accessed by
prefixing the name of the attribute with the name of a process instantiated from that task, e.g., p1.author.

22

The name of an attribute can appear in any context in which its value can appear. For instance, if the
user defines an at ~ e "Cueue_Size" as in the examples then “Queue_Size" can appear anywhere an
integer value is e . This permits the user to name say, a jueue size and use the name to declare
queues with idenu. .l size in a number of task descriptions. Another use is to instantiate “families™ of
tasks, i.e., tasks that shae the same value for some attribute, as shown in Figure 8.

process
Master Process: task Master Task -- A task selection
attributes -
Key Name = some value;
. other attributes, maybe ...
end Master Task;

pl: task foo

attributes
Key Nama = Maatar__Procoaa.Kay_Namo; ~=- Same value as Master Procass
... other atiributes, maybe ...

end foo;

p2: task bar

attributes
Kaey Name = Mastar Procaess.Kay Nane; -- Same value as Master Procaess
.. other attributes, maybe ...

end bar;

Figure 8: Use of Global Attribute Names

The syntax and semantics of the attribute values are attribute dependent. if the attribute is not predefined
in the language, the values are treated as uninterpreted numbers, time values, or strings, as the case
may be, and compatibility is based on value =quality. If the attribute is predefined in the language, the
syntax for the legal values is given in Section 10.2, and compatibility is attribute dependent.

The following attributes are predefined in the language: “mode™ (specifies the mode of operation for a
deal or merge predefined task); “implementation” (specifies the location of the task implementation); and
“processor’ (specifies the processor type on which the implementation can run). These are described in
Section 10.2.

8.1. Rules for Matching Selections with Descriptions

If a task selection specifies an attribute not present in a task description, no match occurs, i.e, the
compiler skips this description and continues searching for a candidate. If a task description provides an
attribute not specified in a task selection, the attribute is ignored.

If a task selection provides a predicate (a disjunction) for an attribute, a matching task description must
proviae values that satisfy the predicate, i.e., the disjunction yields true when evaluated in the context of
the values declared for the aftribute. If a task description provides a single value for an attribute, a
matching task selection must provide exactly that value.

23

9. Structural Information

Syntax:
StructurePart ::= ‘'STRUCTURE’'
StructureClause_Llst“mca
{ ReconfigurationClause—Listspaca }

StructureClause ::= “'PROCESS’' Pr-ocessDeclaration_List, *'/"',

‘‘QUEUE’ ' QueueDeclaratien List, ... oion @ 7

‘'‘BIND'’ PortBinding List, . icoion ' 7"
ReconfigurationClause ::= '‘RECONFIGURATION'’

Reconfiguration_List, . . . *';"’

Meaning:

Process and queue declarations appear under the keyword structurz in a task description. These
declarations define a graph in which processes ara the nodes, and queues are the links. These graphs
depict the intemal structure of a compound task. The structure part of a task description provides the
means for developing hierarchical task descriptions.

9.1. Process Declarations

Syntax:

ProcessDeclaration ::= ProcessName List__ *Y:f’ . skSelection

Examples:

pl: lask obstacle findar;

p2: task obatacle_ finder ports foo: in, bar: oul end obstaclae finder;

p3, pd: task obatacle_finder atlribules author="mrb" end obstacle_finder;

Meaning:

An instance of a task is bound to each process’'s name. The name of a task is the minimal part of a task
selection. Local, actual names (e.g., ports “foo” and “bar” in the example) can be introduced by
providing a port declaration, provided that the types of ports specified in the task declaration are identical
to those provided in the task selection. If they are left out, the formal names used in the task description
are used instead.

9.2. Queue Declarations

Syntax:
QueueDeclaration ::= QueueName { QueueSize } ‘‘:’'’ QueueDefinition
QueueDefinition ::= GlnbalPortName
‘*>’" ProcessName ‘‘'>''
GlobalPortName
Glob: 1PortNaine
‘'>'’ TransformExpression '‘>'’
GlobalPortName
QueueNane ::= Identifier
Queuelize ::= ‘'['' IntegerValue ‘']’

GlobalQueueNam: ::= { ProcessName '‘'.’’ } QueueName

24

Examples:
ql: pl > > p2 ; -- Two ports connected through an unbounded queue.
-- The two ports must have the same type.
ql: pl > (2 1) transpose > p2 ; -- Two ports connected through an unbounded queue.
-- The data arrays are transposed in the queuve.
gl{1l00]}: pl > xyz > p2 ; -- Two ports connected through a bounded (size = 100) queua.
-- Data are transformed in the queue by a proceas '‘xyz’’.

Meaning:

A queue deiinition establishes a logical link between two ports that communicate by passing data from the
first port (source) to the second port (destination). The queue name must be unique within the task
description defining the process-queue graph. The (optional) queue bound declares the maximum
number of elements that will be stored in the queue at any one time. If a queue is full when a “put”
operation is attempted, the process trying to store the data waits until the queue has space for the new
item. If the queue bound is not provided, a configuration dependent, default queue length is assumed, as
described in Section 10.4.

When establishing a logical connection, the ports are checked for type compatibility. Non-union types are
compatible if they have the same name. Union types are compatible if the source set is a subset of the
destination set. A non-union source type is compatible with a union destination type if the source type
name is a member of the destination set.

If the types are not compatible, the user must provide a data transformation operation that will convert
objects of one type into the other as described below

9.3. Data Transformations
Data transformations are operations applied to data coming from a source port in order to make them
acceptable to a destination port.

A data transformation is required if the input and output port types are not compatible. Such
transformations are needed if, for instance, the types have the same structure but the data are in the
wrong format, e.g., turning a square array on its side or converting between floating-point formats.

Complicated transformations can be written as separate tasks, in which case an appropriate task must be
selected and instantiated as a process, and the process name must be specified in the queue declaration.
Simple transformations can be specified directly in the queue declaration.

9.3.1. Off-Line Data Transformations

Complex data transformations can be specified as regular tasks by writing a procedure in some
programming lar juage suitable for either the butffers or one of the heterogeneous processors and
entering an appropriate task description in the library. These data transformation tasks must declare
exactly one input port and one output port.

task corner_ turning
ports

25

inl: in landmark_row_major;
outl: out landmark_column major;

attributes
implementation

"/usr/mrb/screetch.o";

processor = buffer processor:

end corner_turning;

9.3.2. In-Line Data Transformations

Syntax:

TransformExpression

TransformOp

ReshapeOp
SelectOp
TransposeOp
RotateOp
ReverseOp
DataCp

VectorArgument

ArrayArgument

Examples:

TransformOp_Listspac.

ReshapeOp ,
SelectOp ,
TransposeOp,
RotateOp,
ReverseOp,
DataOp

VectorArgument ' ‘RESHAPE’’
ArrayArgument ‘‘SELECT’'
VectorArgument ' ‘TRANSPOSE’’
ArrayArgument. ‘' ‘ROTATE’’

IntegerValue ‘'‘REVERSE’’

Identifier

V(IntegerValue_LiStupaCe vy

‘(* IntegerValue ‘‘IDENTITY'’ ‘)’ ,

‘(' IntegerValue ‘''INDEX’'’ ')’ ,

T)t -- Empty vector
VectorArgument ,

(! ArrayArgument__ListsPaca ‘)

If the input is a 2x2x3 3-dimensional array:

(3 4) reshape

(12) reshape

-- reshapes the input array into a 3x4 2-dimensional array.

-- unravels the array.

If the input is a 2-dimensional array:

((5 2 3) (*)) selec:
((*) (5 2 3)) select
(2 1) transpose

(1 -2) rolate

Additional «xamples:

(5 identity)
(5 index)

2 reverse

-- genaerates an array consisting of rows 5 2 and 3, in that order.

-- generates an array consisting of columns 5 2 and 3, in that order.

-- Transposaes the array in the normal manner.

-- Rotates each row left 1 position and then rotates
-- each column of the raesult down 2 positions.

-- Generates the vector (1 1 11 1).
-- Generates the vector (1 2 3 4 5).

-- Reverses the elements along the 2nd coordinate of an input array.

26

Meaning:

The most common cases of data transformations are expected to be n-dimensional array manipulations.
For these operations, the language provides a short-cut: it is not necessary to write task implementations,
i.e., program code, and task descriptions and to enter them in the library. It suffices to specify the
transformations as part of the queue declaration.

In-line data transformations are specified in post-fix notation, interpreted left-to-right, with arguments
preceding the operators, and with the input port providing the initial argument. In general, the arguments
are multi-dimensional arrays (nested vectors) of scalar data values.

Operator
ineger identity
integer index
vector reshape

array select

Description
generates the vector (1 1... 1 1).

generates the vector (12... N).

unravels an array (i.e., linearizes it) and then reshapes into an array with the
dimensionality of the argument vector. The input array is linearized in row order, i.e.,
by scanning all of the positions varying the highest dimension first. This operation
must be specified it the input and output array do not have the same shape but the
array elements are in the right order when the arrays are unraveled.

extracts (slices) pieces of a data array. If the input is a vector, (5) select represents
the 5th element, and (5 2 3) select is a new vector consisting of the 5th, 2nd, and 3rd
elements in that order. A vector of the form “(*)" selects all components along one
dimension.

vectortranspose permutes the dimensions of a data array according to the argument vector (V). The

it" coordinate of the input array becomes coordinate Vi of the result.

scalar_or_vector rotate

integer reverse

Data Operations

specifies rotations of n-dimensional data arrays. The operator is preceded by an
argument which must be either a scalar (signed) integer value or a parenthesized
array of (signed) integer values. The magnitude of the values specify the number of
positions to rotate the input data, and the sign of the values specify the direction of
the rotation: a positive amount indicates rotation towards lower indices.

A scalar argument specifies how to rotate an input vector. An n-length vector of
scalars specifies how to rotate an n-dimensional input array along each dimension
(one element per dimension). An n-length vector of vectors argument specifies how
to rotate an n-dimerisional input array along each dimension (one top level vector per
dimension) and within each dimension, how to rotate each “row” (one element of a
second level vector per row.)

For example, consider the transformation “((1 2 0) (-3 -4)) rotate” applied to a 2-
dimensional 3x2 input array. The vector (1 2 0) specifies how to rotate the rows; the
vector (-3 -4) specifies how to rotate the columns. The first row is rotated left 1
position, the second row is rotated left 2 positions, the third row is left unchanged.
Then the first column is rotated down 3 positions, and finally, the second column is
rotated down 4 positions.

reverses the order of the elements of an array along an arbitrary coordinate specified
by the integer argument. If the input is a vector, the argument must be “1". In the
transformation “2 reverse”, if the input is a 2-dimensional array, this operation
shuffles columns; if the input is a 3-dimensional array, this operation shuffles planes.

scalar operations applied to each element of an input array. The set of operations is
configuration dependent. The initial set will include operations to round, truncate, or
otherwise convert between various integer and floating-point formats, as described in
the configuration file, Section 10.4.

This is a first attempt at defining the set of the operations a user is likely to perform on n-dimensional

27

arrays. The guiding principle is to keep the notation simple, more complex transformations should
probably be specified as off-line transiormations.

A data transformation operation is more than just a way to achieve type compatibility between ports. It
also serves to specify operations that would be inappropriate or inefficient if written as part of one of the
tasks. For example, consider an application that requires scanning an array in ditferent directions (e.g.,
first by rows, then by columns) and performing some operation on each element (e.g., computing the
average of the neighbors). Rather than writing several versions of the task, one for each traversal
pattern, one could simply write one version of the task, and then instantiate it as many times as
necessary. .ach process so instantiated could then take its input arrays from queues that perform the
appropriate transposition, as in “q1:p1>(2 1) transpose>p2"”. Arrays produced by p1 are transposed
while in the queue, before they are delivered to p2.

9.4. Binding Port Names

Syntax:
PortBinding = ExtPortName '‘=’'' IntPortName
ExtPortName = PortName -- External port
IntPortName = GlobalPortName -- Internal port
Example:
bind

p_deal.inl = obstacle_finder.ini;

p_merge.outl = obstacle_finder.outl;

Meaning:
A port binding maps a port of the process-queue graph defining the internal structure of a task to a pont
defining the external interface of a task.

9.5. Process-Queue Graph Rec.onfiguration

Syntax:
Reconfiguration = *‘'IF'’ RecPredicate ‘‘THEN’’
{ ProcessTermination-Listapace }
Structure_Llstapaca
\\ENDII \\IFII
ProcessTermination ::= ‘'REMOVE’’ GlobalFrocessName List__ . "'/’
RecPredicate ::= RecDisjunction ,
RecPredicate '‘'OR’’ RecDisjunction
RecDisjunction ::= RecConjunction ,
RecDisjunction ‘‘AND’’ RecConjunction
RecConjunction ::= RecRelation ,

‘'*NOT'’ ‘(' RecPredicate ')’

28

RecRelation ::= RecTerm '‘='’ RecTerm , -~ Equal
RecTerm '‘‘/='’ RecTerm , -=- Not equal
RecTerm '‘'>’’' RecTerm , -~ Greater
RecTerm '‘>=’’ RecTerm , ~- Greater than or equal
RecTerm '‘'<’’ RecTerm , -- Less
RecTerm '‘<=’’ RecTerm , -- Less than or equal
RecTerm .= IntegerValue ,
RealValue ,
StringValue ,
TimeValue
Examples:
if Curreant_Time >= 6:00:00 local and Current_Time < 18:00:00 local
then
process
p_vision: lask vision allributes processor = warp2;
queue
q_vision_road: p_deal.out3 > > p_vision.inl;
q_obstaclaes: p_vision.outl > > p merge.in3;
end if;
Meaning:

A reconfiguration statement is a directive to the scheduler. It is used to specify changes in the current
structure, i.e., process-queue graph, of the application and the conditions under which the-e changes
take effect. Typically, a number of existing processes and queues are substituted by new processes and
queues which are then connected to the remainder of the original graph. The reconfiguration predicate is
a boolean expression involving time values, queue sizes, and other information available to the scheduler

at run time.

Notice that nothing is being said about the internal representation of time values. They are definitely not
like integer or real values -- time values cannot be mixed with regular numeric values in an expression. In
addition, currently the language does not provide any arithmetic operators for time values. However, a
few predefined system functions provide for the computation of past or future time values, as described in

Section 10.1.

29

10. Predefined Language Facilities

10.1. Functions

Syntax:
FunctionCall ::= FunctionName { FunctionParameters }
FunctionName ::= O 'CURRENT TIME'' ,

‘'MINUS_TIME'' ,

‘'PLUS_TIME'’ ,

' '‘CURRENT_SIZE''’
FunctionParameters ::= ‘(' Parameter List_ . ")’ -- Function dependent
Parameter ::= IntegerValue ,

RealValue ,

StringValue ,

TimeValue
Examples:
Plus_Time(Current_Time, 2.5 hours) -~ 2.5 hours from the current time
Current Size(Master Process.Data Port) -~ the size of a queue feeding a port
Meaning:

The following functions are predefined in the language: “current_time”, “minus_time", “plus_time", and
“current_size".

The function call “Current_Time" returns the current time as an absolute date in the local time zone.

The function call “Minus_Time(TimeValue,, TimeValue,)" returns the time value obtained by subtracting
TimeValue, from TimeValue,. The following cases are allowed:
1.1t both parameters are absolute times, the result is a relative time, i.e., a duration.
TimeValue, must be later than TimeValue,.

2. If TirméVaIue1 is an absolute time and TimeValue, is a relative time, the result is an
absolute time in the same time zone as TimeValue,.

3. If both parameters are relative times, the result is a relative time. TimeValue, must be
larger than TimeValue,,

The functien call "Plus_Time(TimeValue,, TimeValue,)” retuns the time value obtained by adding
TimeValue, to TimeValue,. The following cases are allowed:

1. If one parameter is an absolute time and the other parameter is a relative time, the result is
an absolute time in the same time zone.

2. If both parameters are relative times, the result is a relative time, i.e., a duration.

The function call “Current_Size(GlobalPortName)” returns the current number of elements stored in the
queue associated with a given port.

Calls to these functions can appear anywhere a value of the same kind as the return value can appear.
That is, a call to a function returning an integer, a real, a string, or a time value can appear instead of an
integer, a real, a string, or a time value, respectively.

30

10.2. Atributes
The following attributes are predefined in the language: “mode”, “implementation”, and “processor".

10.2.1. Mode Attribute

Syntax:

ModeAttr ::= ‘'MODE’’' ‘'‘=’'’ ModeAttrValue
ModeAttrValue ::= Identifier

Meaning:

The values of the "mode” attribute are identifiers denoting the operation performed by one of the
predefined tasks: “broadcast”, "merge”, and “deal”, as described in Section 10.3.

The formal specification of the operation is given by the behavioral part of the task description. The
identifiers used as values for the "mode” attribute are just a convenient shorthand to select what are
expected to be frequently used tasks. Users are more likely to select predefined tasks by specifying a
mode value (i.e., an identifier) than by specifying a timing exgression or a function predicate.

The following identifiers are representative of typical values for the “mode" attribute: “random”, “fifo",
“round_robin”, “by_type"”, “"balanced”, “grouped_by 2". The actual values are implementation
dependent.

10.2.2. Implementation Attribute

Syntax:
" ImplementationAttr ::= '‘IMPLEMENTATION’’ ‘‘='’ ImplementationAttrValue
ImplementationAttrValue ::= StringValue
Examples:
implementation = “"/uar/cbw/het0/damo.o";
Meaning:

The value of the implementation attribute is the name of the file containing the actual object code. The
format of a file name may vary with the host operating system.

10.2.3. Processor Attribute

Syntax:
ProcessorAttr = ''PROCESSOR’’ ''='’ ProcessorAttrValue
ProcessorAttrValue ::= Identifier ,
Identifier (' Identifier List__)’
Examples:
processor = m68000(m68020, mé68032);
processor = m68020(pl, p2, p3);
processor = m68032(p4, p5);
processor = ibmld401;
processor = warp(warpl, warp2);
processor = buffer processor;

K|

Meaning:

The configuration of the heterogeneous machine specifies the different values for the “processor”
attribute, including names of classes of processors as well as names of individual processors, as
ilustrated above. See Section 10.4 for details about specifying the configuration of the heterogeneous
machine.

The value of the “processor” attribute can vary in specificity by using a processor class name or an
individual processor name. For example, WARP means any Warp processor, WARP1 means that Warp
processor.

If the user specifies the name of a class of proccessors as the valu~ of the “processor” attribute, any one
of the members of the class can be used to execute the task. If the user specifies a class name and a set
of members (in parentheses), any one of the members of this set can be used to execute the task. The
members of the set must be a subset of the class as defined by the configuration.

10.3. Tasks
The following tasks are predefined in the language: “broadcast”, “merge”, and “deal”.

10.3.1. Broadcast

“broadcast” is a task with one input port and as many output ports as needed. Input data are replicated
and sent to ail the output ports. Port names are inf for the input port and out!, outZ...., outN for the
output ports.

10.3.2. Merge

“merge" is a task with one output port and as many input ports as needed. The type of the output port is
the union of all the input types. Input data items are merged and sent to the output port. Port names are
int, n2..... inN for N input ports and out1 for the output port.

A merge discipline must be provided as a value to the “mode” attribute, as described in Section 10.2.1.
Possible values include “random” (unordered), “fifo” (ordered by time of arrival to the merge process),
and “round_robin” (one from each input port and repeating.) Because of transmission delays, the order
of arrival of the data might differ from the order in which the data were sent out. A FIFO merge process
uses time of arrival, not time of creation, to order the data.

10.3.3. Deal

“deal” is a task with one input port and as many output ports as needed. The type of the input port is the
union of all the output types. Input data items are sent to one output port. Port names are in? for the
input port and out?, out2,..., outN for the output ports.

A deal discipline must be provided as a value to the “mode” attribute, as described in Section 10.2.1.
Possible values include “random” (unordered), “round_robin” (one to each output port and repeating),
“by_type”, “grouped_by 2", and “balanced”. If dealing by type, the output port must be uniquely
identifiable (i.e., there is exactly one output port of the right type for each possible type accepted by the
input port.) This is the only kind of “‘deal” process in which multiple output types make sense. Other
kinds of “deal” processes require compatible output types.

32

10.3.4. lllustrative Task Descriptions

Figure 9 illustrates typical task descriptions for the predefined tasks. The task description in Figure 9.a
depicts a 2-outpui broadcast task that handles items of some type “packet” in parallel. The task
description in Figure 9.b depicts a 2-input merge task that handles items of type packet in round robin
fashion. Finally, the task description in Figure 9.c depicts a 2-output deal task that handles items of type
packet in round robin fashion.

task broadcast
ports
inl: in packaet;
outl, out2: out packat;

behavior
ensures "insart (outl, first(inl)) & insert(out2, firat(inl))";
timing loop (inl (outl || out2))

attributes

mode = parallel;
end broadcast;

a. Parallel Broadcast

task merge
ports
inl, in2: in packet;
outl: oul packet;
behavior
ensures “"insert (insart(inasert (outl,ficrst(inl)),first(in2)),first(in3))";
timing loop ((inl in2 in3) (raepeat 3 => outl));
attributes]
mode = sequaential round_robin;
end merge;

b. Round-Robin Merge

task deal
ports
inl: in packat;
outl, out2: out packet;
behavior
ensures "insert (outl, first(inl)) & insaert(out2, second(inl))"“;
timing loop (inl outl inl out2);
attributes
mode = sequential round robin;
end deal;

¢. Round-Robin Deal
Figure 9: Predetinec Task Descriptions

These descriptions do not really exist in the library. The compiler generates them on demand to satisfy
process declarations of the form:

pb: task broadcast attributes mode = identfier; end broadcast;
pm: task merge atlributes moda = identifier end merge;
pd: task deal attributes mode = identfier end deal:;

where identifieris “parallel”, “sequential_round_robin”, etc., as defined by the implementation.

33

10.4. Configuration File

Information about the configuration of the heterogeneous machine, the location of system files and
libraries, and other random information required by the compiler, library, and scheduler appears in a
configuration file.

processor = warp(warp_1l, warp2);

processor = sun(sun_1l, sun_2, sun_3);

implementation = "/usr/cbw/hetlib/";

default_input_operation = ("gat"”, 0.01 seconds, 0.02 seconds);
default output_opaeration = (“put", 0.05 seconds, 0.10 seconds);
default_queus_length = 100;

data_operation = ("fix", "fix.o");
data_operation = ("float", "float.o");
data_operation = ("round float”, "round.o");
data operation = {("truncate float", "trunc.o");

Figure 10: Configuration File

The configuration file in Figure 10 illustrates the definition of the hardware configuration (values for the
“processor” attribute), the location of the system task implementations, and various picces of information
about queues and queue operations.

In the “processor” attribute, the meaning of a class name is understood by the scheduler as standing for
any of the specific values in the class (i.e., a run-time choice of processors). Notice that this choice can
be restricted by the user in a task description by specifying a subset of the class, and restricted even
further in a task selection by specifying an even smaller subset of allowable processors.

The example configuration file also specifies the location of system files, in particular, the
implementations of system tasks. Additional information in the file would describe default queue
operations, data transformations, etc.

Keep in mind that the configuration file is not written in the task description language. The example
shown is just an illustration of the kinds of information that are likely to be contained in the tile — form and
content of the file are implementation dependent.

34

11. Appendix -- An Extended Example
This appendix illustrates a task-level description of a fictional application. A process-queue graph of the
application appears in Figure 11.

11.1. Data Transformation Tasks

task corner_t'rning
ports
inl: in landmark_row major;
outl: out landmark column major;
attributes
implamentation = "/uar/mrb/screetch.oc";
processor = buffor_procosuot;
other attributes uniquely identifying an implementation . . .
end corner_turning;

11.2. Type Declarations

type map_database is 8
type destination is ..., ;
type local path is H
type recognized_road is ;
type road_selaction is ..., ;
type vehicle position i% 8
type vahicle motion is A
type wheel motion is ;
type landmark is ... ;
type landmark list is ... ;

type landmark_row_major is :
type landmark_column major is ;

type vision_road is ...,

type sonar_road ™ 55000 ;
type laser road is ;
type rocad is ... ;
type obstacles is ... 3

11.3. Task Descriptions

task navigator
ports
inl: in map_database;
in2: in daestination;
outl: out road selection;
out2: out landmark list;

attributes
author = "“jmw";
version = "1.0";
processor = "m68020";

end navigator,

task road predictor
ports
inl: in map_databaso;
in2: in road selection;
in3. in vehicle position;
outl: out road;
end road predictor;

task landmark_Pradictor
ports
inl: in landmark list;
in2: in vehicle}osition;
outl: out landmark_row_major;
end landmark praedictor;

Map datatase Destinaticon

Lis

Figure 11 -- Example Process-Queue Graph

35

36

tusk road finder
ports
inl: in road;
outl: out racognized road;
end road finder;

task landmark_raecognizer
ports
inl: in landmark_column_major;
outl: out landmark column major;
end landmark_rec~gnizer;

task vision
porta
inl: in vision_road;
outl: out obstaclaes;
attributes
pProceasor = warp;
end vision;

task sonar
ports
inl: in sonar_road;
outl: out obstacles;
attributes
processor = warp;
end sonar;

task laser
ports
inl: in laser_road;
outl: out obsataclas;
attributes
processor = wWarp;
end laser;

task position computation
ports
inl: in landmark columa major;
in2: in vehicle motion;
out.. out2: out vehicle_posit. on;
end poaition_computaticn;

task local path_planner
ports
inl: in wheel motion;
in2: in »batacles;
outl: out local path;
out2: out vehicle motion;
end local path _planuar;

task vehicle control
ports
inl: in local path;
outl: out wheel motion;
end vehicla control;

P

task obstacle finder
ports
inl: in recognized road;
out?- t obstacles;
behavior
leop (inl{19, 15] outl[3, 41}]);
atructure
procass

37

p_deal: task deal attributes mode = by type end deal;
p_merge: task merge attributes mode = fifo end merge;

p_sonar: task sonar;

p_laser: task laser attributes processor = warpl end laser;

bind
p_deal.inl = obstacle finder.ini;
p_merge.outl = obatacle finder.outl;
queue
gql: p_sonar.outl > > p _merge.inl;
g2: p_laser.outl > > p_merge.in2;
g3: p_deal.outl > > p_sonar.inl;
g4: p_deal.outl > > p_laser.inl;

--for dynamic reconfiquration

if Current_Time >= 6:00:00 lccal and Current_Time < 18:00:00 local

then
process

p_vision: task vision attributes processor = warp2;, ond vision;

queue
g5: p_deal.out3 > > p_vision.inl;

qé: p_vision.outl > > p me .in3;
end if;
end obstacle finder;

11 7. Application Description

task ALV
attribates
version = "Fall 1986";
processor = HETO;
speed = faat;
structure
process
navigator: task navigator attributes author =
rvad_p.redictor: task road predictor;
landmark j redictor: task landmark predictor;
road_finder: task road finder;
landmark_recognizer: task lancdmark_recognizer;
obs-acle_finder: task obstacle_finder;

Jjmw

end navigator;

position computation:task position_computation;

local path_planner: task local_path planner;

vehicla_control: task vahiclo_control;
ct_process: task corner_turning;

queue .
gl: navigator.outl > > road predictor.in2;
g2: navigator.out2 > > landmerk predictor.inl;
g3: road predictor.outl > > road finder.inl;
gd: road finder.outl > > obstacle_finder.inl;
gq5: obatacle_findor.outl > > locnl_path_plannar.inz;
g6: local path planner.outl > > vehicle control.inl;
gq7: local_ path_planner.out2 > > position computation.in2;
g8: vehicle control.outl > > local path_planner.inl;

gq9: landmark_predictor.outl > ct_process > landmark recognizer.inl;
~- «equires data transformation between row_major and column major landmarks
ql0:landmark recognizer.outl > > position computation.inl;
gll:position_computation.outl> > road predictor.in2;
gql2:position_computation.out2> > landmark_predictor.inZ;

end ALV;

e W

38

(3]

(4]

(3]

References

M.R. Barbacci and J.M. Wing.
Specifying Functional and Timing Behavior for Real-time Applications. (in process)
Technical Report . Software Engineering Institute, Carnegie Mellon University, 1986.

J.V. Guttag, J.J. Horning, and J.M. Wing.
Larch irn “ive Easy Pieces.
Technical Report 5, DEC Systems Research Center, July, 1985.

J.V. Guttag, J.J. Horning, and J.M. Wing.
The Larch Family of Specification Languages.
IEEE Software 2(5):24-36, September, 1985.

H.T. Kung.
Private communication.

S.A. Shafer, A. Stenz, C.E. Thorpe.

An Architecture for Sensor Fusion in a Mobile Robot.

n Proceedings of the IEEE International Conference on Robotics and Autornation, pages
2002-2011. San Francisco, California, April, 1986.

R.G. Stockton.
The Heterogeneous Machine Simulatcr. (in process)
Technical Report, Software Engineering Institute, Carnegie Melilon University, 1986.

Index
"5 14
‘5
(9.19.21,25, 27,29 30
) 9.19, 21,25, 27,29, 30
* 17,25
, 5,18
5
512,18 21,23

117
= 28

12.17. 23

8,12, 14, 21,28, 27

"

9

5
{ 5
Il 1
)} 5

After 5,19, 20

And 5,21, 27

Array 5,9
ArrayArgument 25
ArrayDimension 9

Ast 5,17, 20
AttrConjunction 21
AttrDescription 21
AttrDescriptionPart 10, 21
AttrDisjunction 21
Attributes 5, 21
AttrName 21
AttrPrimary 21
AttrSelection 21
AttrSelectionPart 11, 21
AttrTerm 21

AttrValue 21

Balanced 30, 31
BasicEventExpression 19

40

Before 5,19, 20
Behavior 5, 14
BehaviorPart 10,11, 14
Bind 5,23

Broadcast 7, 30, 31
duffers 2, 5, 24

By_type 30,31

Comment 5

Compilation 8

C-.mpilationUnit 8

Compiler 8, 32,33

Configuration file 18, 19, 24, 26, 31,33
Constrains 15

Cst 5,17

Current_size 7,29

Current_time 7, 29
CyclicTimingExpression 19

DataOp 25, 26
Date 5,17

Days 5,17

Deal 7,30,31
Delay 7,18.19,20
During 5, 19,20

ElementSize 9

End 5,10,11,27
Ensures 5,14, 15,16
Est 517
EventExpression 18, 19
ExtPotName 27

Fifo 30, 31
FunctionCall 7.29
FunctionName 29
FunctionParameters 29
FunctionPart 14

Get 7,15.18

GlotalAttrName 7, 21
GlobalPortName 12,18 23,27, 29
GlobalProcessName 27
GlobalQueueName 23
GlobalSignalName 12

Gmt 5,17

Grouped_by_2 30, 31

Guard 1€

Hours 5,17

Identifier 5,9, 12, 18, 21, 23, 25, 30
Identity 5, 25, 26

It 527

Implementation 2,7,22, 30
ImplementationAttr 30
ImplementationAttrValue 21. 30

In 7,12, 13

IndeterminateTime 17

Index 7,25,26

Integer 5

IntegerLiteral 7

IntegerValue 7,9,17,19, 21,23, 25,28, 29
Interface specification 14
InterfacePart 10, 12

IntPortName 27

Introduces 15

Is 7,9

i

Larch Interface Language 14
Larch interface Specification 14
Larch Predicate 14,19

Larch Shared Language 14
Larch Trait 14

Library 8.11, 24, 26, 32, 33
Local 7. 17

Loop 7,19

Merge 7,30. 31
Minus_time 7,29
Minutes 7,17

Mode 7, 22,30, 31
ModeAttr 30
ModeAttrValue 21,30
Months 7,17

Mst 7,17

Not 7,21,27

of 7.9

Or 7,21,27
OtherAttrValue 21
Out 7,12, 13

ParallelEventExpression 19
Parameter 29

Plus_time 7,29
PortBinding 23, 27
PortDeclaration 12
PortDeclarationPart 11, 12
PortName 12 27

Ports 2,7,10, 12, 10
Predicate 14,19

Process 5,7, 23
ProcessDeclaration 23
ProcessName 12,21, 23
Processor 5,7,22, 24,30, 31,33
ProcessorAttr 30
ProcessorAttrValue 21, 30
ProcessTermination 27

Pst 7,17

Put 7,15, 18, 24

Queue 5,7,23
QueueDeclaration 23
QueueDetinition 23
QueueName 23
QueueOperation 18
QueueSize 23

Random 30, 31

Real 5

Reailiteral 7

RealValue 7,17, 21,28, 29
RecConjunction 27
RecDisjunction 27
Reconfiguration 7, 23, 27
ReconfigurationClause 23
RecPredicate 27
RecRelation 27, 28
RecTerm 28

Remove 7,27

Repeat 7,19, 20
Requires 7, 14,15, 16
Reshape 7, 25,26
ReshapeOp 25

Reverse 7,25, 26

41

42

ReverseOp 25
Rotate 7, 25,26
RotateOp 25
Round_robin 30, 31

Scheduler 5,12, 13,28, 33
Seconds 7, 17

Select 7, 25,26

SelectOp 25
SignalDeclaration 12
SignalDeclarationPart 11,12
SignalName 12

Signals 7,10, 12

Size 7.9

Sting 5

StringLiteral 7
StringValue 7, 21,28, 29, 30
Structure 7,11, 23, 27
StructureClause 23
StructurePart 10, 23
Switch 5

Task 5,7,10, 11
TaskDescription 8, 10
TaskName 10, 11
TaskSelection 11,23
Then 7,27

TimelLiteral 7,17
TimeOtDay 17
TimeUnit 17
TimeValue 7,18,19 21,28, 29
TimeWindow 18,19
TimeZone 17

Timing 7,14
TimingExpression 14, 19
TimingPart 14

To 7.9

Trait 14
TransformExpression 23. 25
TranstormOp 25
Transpose 7, 25,26
TransposeOp 25

Type 7.9
TypeDeclaration 8,9
TypeName 9, 12
TypeStructure 9

Union 7.9
UnionStructure 9

VectorArgument 25
When 7,19, 20

Years 7.17

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

12 REPORT SECURITY CLASSIFICATION

1b. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE

29 SECURITY CLASSIFICATION AUTHORITY 3, DISTRIBUTION/AVAILABILITY OQF REPQORT
N/A

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE . . . L.
N/A Distribution unlimited.

4 PERFCRMING DRGANIZATION REPORT NUMBERI(S)

5. MONITORING ORGANIZATION REPORT NUMBERI(®

Kb, OFFICE SYMBOL
({f applicabie)
I

6a. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INST.

Ja. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM QFFICE

6c. ACORESS (City, State ana Z1¥ Coae 7b. ADDRESS (City, State and ZIP Coae;
CARNEGIE-MELLON UNIVERSITY ESD/XRSI
PITTSBURGH, PA 15213 HANSCOM AIR FORCE BASE
HANCOOAM . MA N1717]

B8s. NAME OF FUNDING/SPONSCRING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

ESD/XRS1

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State and ZIP Code)
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PA 15213

10. SOURCE OF FUNDING NOS.

1. TITLE lncxucu Security C xfncauom
urra ﬂ Leve escilptlon Language Pre-
izmina r" erence Ma

I WORK UNIT

PROGRAM PROJECT TASK
ELEMENT NO. NO. NO. NO.
63752F N/A N/A N/A

12. PERSONAL AUTHORIS)

M.R. Barbacci and J.M. Wing

i3a TYPE OF REPORT 13b. TIME CCVERED

FROM TO

TTVAT

14. DATE OF REPORT (Yr., Mo., Day) -

15. PAGE COUNT
Dec. 1986 Version 0. 46

16. SUPPLEMENTARY NOTATION

17 COSATI CODES

FIELD GROUP | SuB. GR

|
| |

18. SUBJECT TERAMS (Continue o reverse if necessary and identify by block number)

programming applications.
syntax and semantics of the language.
appreciated. [addresses of authors follow]

19 ABSTRACT (Continue on reverse if necessary and identify by biocx number)
Durra is a language designed to support the development of large-grained parallel

This document is a preliminary reference manual for the
Comments,

suggestions, criticisms, etc. are

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED U same as reT. C oTic users O

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED DISTRIBUTION

22a. NAME OF RESPONSIBLE INDIVIOUAL

KARL H. SHINGLER

22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

{Inciude Area Code)

412 268-7630 SEI JPO

DD FORM 1473, 83 APR

EQITION OF 1 JAN 73 1S OBSOLETE.

SECURITY CLASSIFICATION CF THIS PAGH

